Intelligent Fault Diagnosis and Prognosis for Engineering Systems gives a complete presentation of basic essentials of fault diagnosis and failure prognosis, and takes a look at the cutting-edge discipline of intelligent fault diagnosis and failure prognosis technologies for condition-based maintenance. It thoroughly details the interdisciplinary methods required to understand the physics of failure mechanisms in materials, structures, and rotating equipment, and also presents strategies to detect faults or incipient failures and predict the remaining useful life of failing components. Case studies are used throughout the book to illustrate enabling technologies.

Intelligent Fault Diagnosis and Prognosis for Engineering Systems offers material in a holistic and integrated approach that addresses the various interdisciplinary components of the field—from electrical, mechanical, industrial, and computer engineering to business management. This invaluably helpful book:

- Includes state-of-the-art algorithms, methodologies, and contributions from leading experts, including cost-benefit analysis tools and performance assessment techniques
- Covers theory and practice in a way that is rooted in industry research and experience
- Presents the only systematic, holistic approach to a strongly interdisciplinary topic
Contents:

Preface and Acknowledgements
Prologue
Chapter 1. Introduction
Chapter 2. The Systems Approach to CBM/PHM
Chapter 3. Sensors and Sensing Strategies
Chapter 4. Signal Processing/Data Base Management
Chapter 5. Fault Diagnosis
Chapter 6. Fault Prognosis
Chapter 7. Fault Diagnosis and Prognosis Performance Metrics
Chapter 8. Logistics: Support of the System in Operation
Appendix

About the Authors:

George Vachtsevanos, Ph.D., is Director of the Intelligent Control Systems Laboratory in the School of Electrical and Computer Engineering at Georgia Institute of Technology, in Atlanta, Georgia

Frank L. Lewis, Ph.D., is Head of the Advanced Controls, Sensors, and MEMS Group in the Automation and Robotics Research Institute at The University of Texas at Arlington, in Fort Worth, Texas

Michael Roemer, Ph.D., is Director of Engineering at Impact Technologies, LLC, in Rochester, New York

Andrew Hess is Air System PHM Lead and Development Manager in the Joint Strike Fighter Program Office at Naval Air Systems Command, in Patuxent River, Maryland

Biqing Wu, Ph.D., works on various topics of active disturbance control and CBM/PHM. She is currently serving as a research engineer at the Georgia Institute of Technology, in Atlanta, Georgia